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ABSTRACT
Gesture recognition systems using nearest neighbor pattern match-
ing are able to distinguish gesture from non-gesture actions by
rejecting input whose recognition scores are poor. However, in the
context of gesture customization, where training data is sparse,
learning a tight rejection threshold that maximizes accuracy in
the presence of continuous high activity (HA) data is a challeng-
ing problem. To this end, we present the Voight-Kampff Machine
(VKM), a novel approach for rejection threshold selection. VKM
uses new synthetic data techniques to select an initial threshold
that the system thereafter adjusts based on the training set size and
expected gesture production variability. We pair VKM with a state-
of-the-art custom gesture segmenter and recognizer to evaluate our
system across several HA datasets, where gestures are interleaved
with non-gesture actions. Compared to alternative rejection thresh-
old selection techniques, we show that our approach is the only
one that consistently achieves high performance.

CCS CONCEPTS
• Human-centered computing → Gestural input; User inter-
face programming.
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1 INTRODUCTION
Gesture interactions have become an integral part of user inter-
face (UI) design, and, as such, researchers have put considerable
effort into gesture analysis, design, synthesis, and recognition. One
particularly useful branch of research focuses on customization,
where end users, including designers and developers, are able to
specify gestures by example [39]. In this way, one may train their
system to activate software functions using motion patterns that
are personal and memorable [34]. To accommodate both customiza-
tion and UI research, the community has developed a slew of light
weight recognizers [2, 13, 23, 26, 44, 46, 48, 52, 53, 55, 57] referred
to as the $-family and extended $-family. These recognizers col-
lectively emphasize simplicity and straightforwardness in a way
that does not sacrifice performance but promotes and facilities
adaptability. For these reasons, $-family recognizers have become
exceedingly popular1. In another line of research, given that rec-
ognizer performance generally improves with the training set size,
researchers have explored data augmentation through synthesis to
overcome the minimal data problem associated with customization.
Techniques using the kinematic theory of rapid human movement
[25] and gesture path stochastic resampling [42] have been success-
fully applied to this problem. The community has also investigated
recognition acceleration techniques [15, 16, 38, 50], data collection
protocols [40], and, recently, continuous custom gesture recogni-
tion. Machete [43], for example, is a device agnostic segmenter
that is able to identify candidate gestures in a continuous stream
of input. Despite these advances, an area of inquiry that remains
relatively unexplored is that of rejecting malformed gestures and
non-gesture input patterns, which is the main issue we address in
this work.

The recognition techniques described above primarily use near-
est neighbor pattern matching, which is to say that a recognizer
measures the (dis)similarity of a query sample against all template
samples previously demonstrated by a user. The query-template
pair that yields the best score is then said to belong to the same
gesture class, and the query is therefore assigned the template’s
gesture class label. One problem with this approach is that not all
queries are gestures. This is especially apparent with continuous
gesture recognition where the system must continuously decide
with each new input device sample whether or not the user has

1See, for example, https://depts.washington.edu/acelab/proj/dollar/impact.html
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gesticulated. In such systems, one may accept or reject a candidate
gesture depending on its recognition score. Selecting a suitable
rejection threshold, however, is problematic for several reasons.

First, it is difficult to estimate the within and between class score
distributions with the amount of training data provided in cus-
tomization context. Progress has been made by using synthetic
data to estimate score distributions [44], though, as we later dis-
cuss, current techniques do not yield tight thresholds. In situations
dealing with high activity data, where gestural interactions are
interleaved with non-gesture actions, loose boundaries can lead
to high false positive rates and degrade user experience [21]. Sec-
ond, the optimal threshold depends, in part, on the training set
size. With an infinite number of training samples, one could use
an arbitrarily tight threshold, whereas, with only a single training
sample, one must allow samples further away from the template to
be matched. Third, Taranta et al. [40] recently showed that gesture
production variability is application-dependent, even for the same
gesture set using the same input device. As such, a threshold that is
appropriate in one scenario may yield too many false negatives in
another. Fourth, a threshold selection technique that works well for
2D data may not work well for 3D data. Given that 3D interactions
have become increasingly mainstream through advancements in
AR and VR, for example, it has become ever more important that
gesture customization techniques are cross-platform compatible.
The Voight-Kampff Machine (VKM) is a new rejection threshold
selection technique that begins to address these issues. VKM uses
synthetic data to generate score distributions from which it selects
an initial rejection threshold. VKM then uses simulation based on
the training set size and expected gesture production variability
to adjust the threshold. Further, in this work we focus specifically
on rejection threshold selection for continuous high-activity data
where gesture candidates are evaluated using nearest neighbor
pattern matching.

As such, the main contribution of this paper is a new device
agnostic rejection threshold selection technique for continuous
data that includes the following novel features:

• A new negative synthetic data generation method called
Mincer for generating samples closer to the gesture boundary
than prior techniques,

• Amethod for selecting a rejection threshold based on applica-
tion-dependent gesture production variability, and

• A threshold adjustment strategy based on the training set
size.

We first evaluate VKM by employing a state-of-the-art device ag-
nostic segmenter (Machete) [43] and recognizer (Jackknife) [44]
over high-activity data. The system is trained with custom ges-
tures and then put to the task of recognizing a series of gestures
embedded within a stream of constant non-gesture motion. We
compare our results against an oracle rejection-threshold selec-
tion system and several alternative rejection threshold selection
techniques. Our findings reveal that VKM is the only technique
that achieves near optimal performance across all four input de-
vice types tested. In a second evaluation, we further compare our

system against other state-other-art continuous gesture recogni-
tion approaches and show that VKM (with Machete and Jack-
knife) similarly outperforms its competition, thereby demonstrat-
ing that VKM is a powerful threshold selection solution. Source
code, pseudocode, and additional information can be found at
https://www.eecs.ucf.edu/isuelab/research/vkm/.

2 RELATEDWORK
Our approach to rejection threshold selection is informed by several
related areas of investigation, each of which we discuss throughout
this section.

2.1 Gesture Customization
An early example of custom gesture recognition in HCI is Rubine’s
use of linear discriminate analysis over trivial stroke features, such
as the bounding box diagonal length, stroke duration, and total
angle traversed, among others [39]. Although the method was pop-
ular, it still required large quantities of data to perform well and
was inaccessible to non-expert user interface designers who aspired
to integrate gesture recognition into their prototype software. Both
problems were addressed when Wobbrock et al. [57] introduced
their $1 recognizer, a method that employed straightforward nor-
malization techniques with nearest neighbor pattern matching. The
success of $1 launched a branch of research into the suite of now
widely used $-family and $-family like recognizers. A few examples
include $N [1] for multi-stroke gestures; $P [53] and $P+ [52] for
articulation invariant recognition; protractor [26], Penny Pincher
[46], and $Q [55] for speed; and 1¢ [13], $3 [22], and Jackknife [44]
for 3D gesture recognition. The philosophy of this work champions
straightforwardness and simplicity so that such recognizers are
accessible to non-experts and can easily be ported to new platforms.
Although, we do not claim VKM is $-family principled, the tech-
niques we develop herein are derived from the $-family body of
work, and, in our view, complements it.

2.2 Gesture Production Variability
Recent research has shown a number of factors can influence ges-
ture production variability. For instance, gestures produced within
a game environment tend to be more variable than those sampled
using standard data collection protocols where a user gesticulates
at their convenience [8, 40, 45]. Similarly, styling words such as
“perform gesture faster" can influence variability [20] as does mood
[27, 30], gesture familiarity [5], and gesticulation speed [54]. It has
been shown that gesture production can even vary from day to day
[28]. As a result, training data variability will unlikely resemble true
gesture production variability unless practitioners put effort into
developing ecologically valid data collection methods. VKM takes
this phenomenon into consideration when selecting a rejection
threshold by using Monte Carlo simulation to inflate the rejec-
tion threshold based on expected gesture production variability
differences.

2.3 Synthetic Data Generation
As noted, gesture recognizer accuracy generally improves with
the training set size. To overcome data scarcity problems associ-
ated with gesture customization, synthetic data generation (SDG)

https://www.eecs.ucf.edu/isuelab/research/vkm/
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techniques have been proposed to increase the training set size.
Various forms of SDG have been developed and implemented to
achieve this, including geometric transformations [10, 47], kernel
filters [18], and random erasing [58]. Even in cases of extreme data
scarcity we have services like Gestures à Go Go (G3) [25], a web
service practitioners may use to generate synthetic samples from
real gestures. G3 uses the kinematic theory of rapid movements
[37] to learn a gesture’s sigma lognormal (SLM) model parameters
[33], which G3 then varies to produce new samples. With this ap-
proach, one can accurately reproduce several population feature
distributions from only a single example. A carefully selected SLM
parameter perturbation strategy has also been used to recreate the
variability of low vision users [52]. Two issues with SLM are that
the technique is fairly complex and parameter extraction can have
high latency. Gesture path stochastic resampling (GPSR) [42] is
an alternative technique that is both $-family principled and per-
formant. GPSR synthesizes new samples by randomly resampling
points along a given trajectory, randomly removing a subset of
the points, and then normalizing the Euclidean distance between
each remaining pair of consecutive points. It is also interesting to
note that outside of gesture customization, [11] similarly saw suc-
cess with time series synthesis using random point removals and
renormalization over their training data. Though SLM and GPSR
have been shown to improve recognizer accuracy and fool human
perception [24], we use GPSR in this work to generate positive
synthetic samples since GPSR also works with 3D data [44]. How-
ever, one difference in our use of GPSR is that we define a new
resampling rate equation to replicate score (rather than feature)
distributions.

2.4 Rejection Threshold Selection
When the training dataset is sufficiently dense, there are a number
ways inwhich one can learn a rejection threshold. Liu and Chua [29]
identify three common approaches for rejecting negative samples:
use a set of explicitly defined unwanted patterns to build a set
of garbage models, use the distribution of scores between classes
to learn a cut off, or form a universal background model (UBM)
by generating mixture models from positive samples. Depending
on which machine learning method is used, another option is to
perform a grid search [41] or empirically tune the system through
trial and error. Of course these options are difficult to apply with
sparse data. For this reason, recent trends have looked to synthetic
data to increase the training set size [6]. One such approach is
Jackknife [44] that synthesizes gesture and non-gestures patterns
from which a rejection threshold is learned. VKM takes a similar
approach, though also takes factors that we previously considered
into account.

Because false negatives are often more desirable than false pos-
itives [21], certain techniques dynamically adjust the rejection
threshold in response to given input patterns. For example, Kang et
al. [18] temporarily lower their rejection threshold when a pattern
was rejected but is near a gesture boundary. They assume that a
user will immediately retry the gesture if intended. In the presence
of noise or unreliable segmentation, one may require that a ges-
ture is detected over multiple frames before confirming recognition
[4, 17, 35]. Such techniques are complementary to our work and to

use VKM does not prohibit one from including these features into
their system.

2.5 User Experience
User experience is central to gesture recognition as it determines
whether a user will continue using gestures to interact with the
system, or if they will revert to an input method that is more fa-
miliar and reliable. To this end, Freeman et al. [19] identify three
considerations for building systems with gesture support: response
times, algorithmic reliability, and economic constraints. In modern
systems, latency and accuracy are usually the two main parameters
one must balance, and, often times, one will sacrifice accuracy in
favor of improved latency. For this reason, researchers have put
considerable effort into accelerating recognition by employing hi-
erarchical methods [38], data reduction [36, 49, 51], pruning [50],
lower bounding [44, 55] and more efficient measurement schemes
[46, 55]. However, less attention has been given to rejection, which
can also be used to improve accuracy and user experience.

Katsuragawa et al. [21] note that false positives gestures can
result in system state changes that are difficult or too time consum-
ing to recover from. They argue that eliminating false positives is
more important than eliminating false negatives. In the context
of continuous custom gesture recognition over high-activity data,
it is therefore critical that patterns near gesture boundaries are
not falsely recognized as belonging to the same gesture class. To
accomplish this, VKM introduces a new negative synthetic data
generation method that produces motion patterns similar to but
not precisely from the same class as a given gesture. This helps
VKM select tight rejection thresholds that maximize accuracy, and,
consequently, improve user experience.

3 THE VOIGHT-KAMPFF MACHINE
The Voight-Kampff Machine shown in Figure 1 is inspired by the
rejection threshold selection system used by Jackknife (JK) [44],
whereby VKM uses synthetic data generation to synthesize posi-
tive and negative score distributions from which VKM estimates
a rejection threshold. In more detail, to select an initial threshold,
VKM uses a variant of gesture path stochastic resampling (GPSR) to
generate a common within class score distribution. VKM similarly
uses a new synthetic data generation technique called Mincer to
generate a common non-gesture score distribution. We refer to
these distributions as the positive and negative score distributions,
respectively. Using these distributions, VKM thereafter selects as
the rejection threshold the score which best separates the positive
and negative distributions. Two adjustments are then made to this
threshold. First, we reduce the threshold based on the training set
size; since more of the gesture space is covered by the training data,
this reduction helps to reduce false positive errors. Second, because
it has been shown that gesture variability is application-dependent
[8, 40, 45], we inflate the threshold by an application-dependent
gesture production variability value.

Although VKM’s design is informed by Jackknife, there are sev-
eral key differences. Both systems use GPSR to generate synthetic
data; however, the JK authors used expert knowledge to select
GPSR parameters. In our work, we use optimization to learn op-
timal GPSR parameters for several input device types. Another
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Figure 1: Architecture diagram for the Voight-KampffMachine. From left to right, VKMaccepts a set of training samples. From
each training sample, VKM generates a positive and negative synthetic data distributions using GPSR andMincer, respectively.
VKM then uses these distributions to estimate a rejection threshold thatmaximizes overall accuracy based on the 𝐹1-score. The
threshold is then adjusted using simulation to take into account application-dependent gesture production variability and the
template count.

subtle difference is that we optimize the synthetic score distribution
rather than feature distributions as was done with the original GPSR
work. Both systems also use synthetic data generation to synthe-
size negative samples. JK uses a splicing technique that generates
a reasonable distribution appropriate for low-activity data under
window-based segmentation, but, as we show in our evaluation,
this approach is inappropriate for high-activity data. VKM, on the
other hand, introduces Mincer, which is able to generate negative
samples near a given gesture class boundary. This approach leads to
tighter rejection thresholds. Finally, unlike prior work, VKM adjusts
the threshold based on training set size and expected gesture pro-
duction variability. These differences yield high quality rejection
thresholds. In the remainder of this section, we describe VKM in
greater detail.

3.1 Accuracy Measure
To select a rejection threshold, we estimate 𝐹𝛽 -scores over distribu-
tions of synthetic data. 𝐹𝛽 -score is a well knownmeasure commonly
used throughout the machine learning community that combines
precision and recall, both of which are important in gesture recog-
nition. 𝐹𝛽 -scores also have the desirable property that they do not
include true negative results in their calculation. This property is
important because continuous input comprises mostly non-gesture
data, and optimizing a system for high true negative detection may
result in poor threshold selection. Formally, the 𝐹𝛽−score is defined
as follows:

𝐹𝛽 =

(
1 + 𝛽2

)
· precision · recall(

𝛽2 · precision
)
+ recall

(1)

=
(𝛽2 + 1) 𝑡𝑝

(𝛽2 + 1) 𝑡𝑝 + 𝛽2 𝑓 𝑛 + 𝑓 𝑝
, (2)

where precision is the fraction of true positives (𝑡𝑝) over all true
and false positive (𝑓 𝑝) samples, and recall is the fraction of true
positives over all true and false negative (𝑓 𝑛) samples:

precision =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑝
, (3)

and

recall =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑛
, (4)

where 𝛽 controls the relative weight between precision and recall.
When 𝛽 = 1, we have the traditional F1-score that uniformly bal-
ances both measures. In our framework, false positives and true
negatives are those negative samples that fall respectively left and
right of a given threshold. Similarly, true positives and false nega-
tives are those positive samples that fall left and right of the same
threshold. We next describe our approach to positive synthetic data
generating using GPSR, after which we introduce Mincer, our new
negative synthetic data distribution method.

3.2 Positive Synthetic Data Generation
VKM uses GPSR [42] to generate synthetic positive score distribu-
tions. In other words, we synthesize gesture samples from training
data and measure their dissimilarities from the seed sample, which
results in a distribution of within class scores. Note that because we
are concerned with customization, we only require that GPSR can
sufficiently reproduce within class variance from a single gesture
sample. Since we combine per-class distributions into a common dis-
tribution, we do not require that individual class results are realistic
or accurate, only that the final distribution represents the combi-
nation of all within class distributions. We next review GPSR and
thereafter discuss how we extend GPSR to support device-agnostic
positive sample generation.

3.2.1 Gesture Path Stochastic Resampling. In short review of GPSR,
one first spatially resamples a given trajectory so that the distance
between selected points along a gesture path is random, rather
than uniform. One then rescales the distance between points to
uniform length. This process fundamentally alters the trajectory’s
shape, but because the transformation preserves low frequency
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information, its gesture class assignment remains valid. To simulate
corner cutting and increase sloppiness, one may optionally remove
points from the resampled trajectory before one rescales. The re-
sampling rate𝑁 is critical to GPSR performance—large values result
in little variation, whereas small values generate too much varia-
tion. Further, the optimal resampling rate is trajectory dependent.
An optimal-𝑁 solution for 2D gesture data based on gesture path
density and openness was learned, but no such solution exists for
3D data. Even for 2D data, though, we are concerned with repli-
cating score distributions rather than gesture property (feature)
distributions. For these reasons, we require a new equation.

3.2.2 Device Agnostic GPSR. We next describe our approach to
finding a new device-agnostic optimal-𝑁 equation, our optimization
procedure, and the results.

Approach: We sought to find an optimal resampling rate based
on trajectory properties such that synthesized samples reproduce
the within class variance when measured against their seed trajec-
tories. We are interested in properties like path length and density
that are easy to understand and calculate. In the end, we consid-
ered a number of properties based on prior gesture recognition and
synthesis work [3, 39, 42], including:

(1) Traversed Angle: Summation of all angles (in radians) formed
between consecutive vectors along the gesture path.

(2) Sameness: Summation of dot products between consecutive
normalized vectors. Similar to traversed angle, except with-
out an arccos conversion. We believe dot products are likely
to be more robust to noise.

(3) Density: Length of the gesture path divided by its diagonal
length. A more dense gesture is likely to have more variabil-
ity.

(4) Sharpness: Same as traversed angle, except angles are squared,
giving emphasis to corners and cusps, which may drive up
variability.

(5) Inverse Sharpness: Sharpness result inverted, giving emphasis
to straight lines.

(6) Speed: Duration of gesture in seconds.
(7) Inverse Speed: Speed result inverted.
(8) Signal-To-Noise Ratio: A measure of what data remains after

a low pass filter is applied to a trajectory.
(9) DP Count: We apply angular Douglas-Peucker (DP) resam-

pling [43] and count the number of points. We had antici-
pated a relationship between variability and the number of
points needed to adequately describe a gesture, which the
angular DP count may indicate.

Other properties we considered either violated our design crite-
ria or were thought to be irrelevant because, although they were
appropriate for statistical analysis and classification, they would
not make good optimal 𝑁 predictors. Although we started with
those properties listed above, we intended to investigate further if
required, but found it unnecessary.

Optimization: We now describe our optimization procedure.
First, for each high-activity dataset training sample described in Sec-
tion 4.1, we find thewithin class distribution. Specifically, for a given
participant and training sample, we measure its distance against
each remaining within class sample. Since our dataset contains
five training samples per gesture class, we take four measurements

per training sample. These are combined into a single within class
variance result called the target. We then perform a binary search
over GPSR’s resampling rate space to find 𝑁 whose distribution
matches the target’s variability. We finally then selected 𝑁 that
minimizes the synthetic and real within class variance difference.

Once we had 𝑁 for each training sample, we aggregated all
data together and performed stepwise linear regression to find
which trajectory properties most influenced the optimal resampling
rate. Analysis revealed that density and traversed angle were good
candidate properties to exploit. We thereafter set out to find a
solution for the following equation:

𝑛 = 𝑥0 + 𝑥1 · density + 𝑥2 · angle + 𝑥3 · density · angle (5)

We used Luus-Jaakola (LJ) optimization [31] to stochasticly search
the local parameter space. Rather than attempt to fit our model
to optimal 𝑁 values per individual gesture, we instead optimize
our model to reproduce the within score distribution. (Recall that
our objective is to generate a representative score distribution, not
to synthesize realistic samples.) In each LJ step, we first randomly
sample the local parameter space to generate new candidate coeffi-
cients. We then generate the real and synthetic within class score
distributions and measure their statistical distance. Since the initial
distributions are likely far apart, we begin with Wasserstein until
they overlap, after which we switch to the Kolmogorov-Smirnov
distance.
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Figure 2: Cumulative probability distribution of the within
class scores measured by Jackknife for real and GPSR syn-
thesized gestures. Results indicate by their similarity that
GPSR is able to replicate the real score distribution us-
ing synthesis, especially for Kinect, Vive Quaternion, and
Mouse data. Vive Position is less accurate as can be seen
by the difference in distributions, though performance does
not suffer as shown in our evaluation (Section 4).
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Figure 3: Mean within class score of each training sample
measured against every other sample (blue) and of each
training sample measured against an equal number of syn-
thetically generated samples (orange). Gesture classes are
enumerated and organized along the x-axis so that real and
synthetic distributions are collocated their class. Similarly
densities indicate that GPSR is able to replicate the real
gesture class distributions. Results show that the synthetic
and real distributions are similar for most gesture classes,
though it is clear that further improvements are possible.

Results: This process produced a unique set of coefficients per
input device type. The resulting cumulative probability distribu-
tions are shown in Figure 2. Although all distributions are statis-
tically different because of sharp rises that result in moderate KS
differences (between .08 to .17), we see that within their respec-
tive domains, the distributions are relatively close. One exception
is with Vive Position data where it can be seen that the distribu-
tions diverge, though the divergence does not degrade performance
as shown in our evaluation. In Figure 3, we plot the within class
score of every training sample from every dataset. Visual inspec-
tion of location and variance reveals that GPSR is able to produce
scores that reasonably replicate real gestures. Still, some classes
in particular have poor synthetic results. For example, synthetic
fly-like-an-eagle2 (forth column) scores are significantly larger than
real scores on Vive Quaternion data, whereas the synthetic left-
right-left and right-left-right jab gesture scores are notably less
than real scores on Kinect. To address these differences, we may
require a third attribute beyond density and traversed angle that
help decide optimal-𝑁 . However, since we primarily care about

2Full-body gesture names from [43]. Fly-like-an-eagle - 3x movement with arms
extended to the sides; left-right-left/right-left-right - jabs with respective hands in
quick successions.

aggregate score distributions (Figure 2), we believe the current
equation meets our requirements.

3.3 Negative Synthetic Data Generation
VKM uses a new technique called Mincer to generate synthetic
negative data, which is inspired by Jackknife’s splicing technique
[44]. We first describe splicing and thereafter our approach.

Splicing: Jackknife [44] uses splicing to generate negative syn-
thetic data, whereby two samples are randomly drawn from the
training set, after which a random subsequence from each gesture
is extracted and concatenated together to form a single trajectory.
The negative sample is then scored against each training sample,
and each score is added to the common distribution. We find that
this splicing techniques works well to generate a representative
negative distribution. This can be seen visually in Figure 4 where
there is little divergence between real and synthetic distributions.
However, as we show in our evaluation, spliced distributions do
not lead to tight thresholds.

Mincer: In VKM, we take a different approach using a new tech-
nique we call Mincer. This approach generates gesture-specific neg-
ative samples by inserting subsequences of other training samples
into the given gesture sample. As a result, Mincer yields negative
samples that are on or near the seed sample’s boundary. One final
difference between Mincer and splicing is that minced samples
are only measured against their seed gesture, rather than being
measured against all samples.

In more detail, we spatially resample all training data to high
resolution trajectories to ensure we preserve local features, after
which we min-max normalize each sample. We next convert each
trajectory into a set of direction vectors, so that the gesture set
is defined as a set of displacements rather than a set of positions.
To generate a negative sample from a seed gesture via mincing,
we randomly select a prepared sample from a different gesture
class as well as two indices. We then copy the associated subset
of direction vectors from the selected sample into the seed sample
at the same location specified by the indices. When the difference
between indices is negative, we copy direction vectors in reverse
order. We last perform a cumulative summation on the new vector
set to convert these displacements into a set of positions. Figure
5 illustrates example mincing of a 2D gesture dataset. One will
notice similarities between the seed gestures and their negative
sample variations. However, as can be seen, the sketches appear
to be realistic strokes, which implies Mincer is able to generate
negative samples near the gesture boundary.

Initially, we believed it would suffice to uniformly sample in-
dices from the full range of allowable values. We found, however,
that width matters. If the resulting distribution contains too many
minced samples with negligible modifications due to small width re-
placements (indices close together), the negative distribution shifts
left as does the rejection threshold. Conversely, if the distribution
contains toomany significantlymodified samples due to large width
selections (indices far apart), the distribution shifts right as does
the rejection threshold. Our first attempt to address this issue was
to ensure the width fell within the middle third of possible val-
ues, following a Goldilocks-like assumption that we should avoid
extreme widths. We later found that the ideal range depends on
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Figure 4: Comparison of real and splice-based negative
score distributions over four high-activity datasets. Mea-
surements were made between training and real negative
samples take from continuous session using Jackknife. Al-
though the real and synthetic distributions are statisti-
cally different from each other according to two-sample
Kolmogorov-Smirnov testing, we see they are sufficiently
close. The issue with splicing, however, is that wemust shift
the distribution left in order to learn rejection thresholds
that are near gesture boundaries.

the dataset. For 2D input data, we allow widths from the lower
two-thirds range, and for 3D data, we allow widths from the upper
two-thirds range. It is currently unknown if this sampling strategy
holds universally or must be tuned per input device or application.
One possible explanation for our present finding is that because
handwriting, being higher frequency data, embeds more informa-
tion than full body motion, small changes in the trajectory move
samples toward the gesture boundary faster than do small changes
for full body gestures. We, however, leave this investigation for
future work. Next, we tackle positive sample synthesis.

3.4 Rejection Threshold Scaling
We now address two issues that impact rejection threshold selec-
tion. First, the data collection protocol one uses to collect training
data impacts gesture production variability [40]. A common data
collection approach practitioners use is to collect isolated samples
that users generate in a low-stress environment, one at a time, and
if one is unhappy with their input, they can simply replace it. The
variability of such data is likely to be less than that of the target
application, where differences in environment, stress, usage, and
sloppiness collectively contribute to greater variability. Since our
technique attempts to locate gesture class boundaries from given

Figure 5: Example negative samples generated with Mincer.
The first column comprises training samples from the high-
activity Mouse datasets (Section 4.1) followed by its subse-
quent minced variants. Notice how significant portions of
the original seed samples appear in their negative sample
counterparts yet appear to be believable sketches. This sim-
ilarity allows us to better find identify gesture class bound-
aries when measured by a recognizer.

training data, we propose to inflate the threshold by a value deter-
mined a priori. This inflation factor, unfortunately, is application
dependent, and whether or not one can estimate it from training
data remains unclear. How we inflate the threshold will be clarified
shortly.

Second, we must reduce the threshold as the training set size
increases. As illustrated in Figure 6, thresholds must be sufficiently
large so as to provide adequate coverage over the application ges-
ture class space. Note, false positives increase as we train with more
data but hold the threshold constant; conversely, we are able to
improve accuracy by reducing the threshold as the training set
size increases. To determine how we should scale the estimated
rejection threshold, we use simulation.

3.4.1 Simulation-based Rejection Threshold Adjustment. Our sim-
ulation accepts as input an initial threshold 𝜏 , an inflation factor
], and the training set size 𝑇 . The simulation outputs an adjusted
threshold. Our goal with simulation is to find a rejection threshold
scaling factor _ that maximizes F𝛽 . We represent the gesture class
training sample space as a hypersphere centered on zero whose
radius is the given rejection threshold 𝜏 . The application space is the
training space scaled up by the inflation factor (𝜏×]). We also define
a test space centered on zero whose radius is the maximum of either
the application space or training sample’s reach,max(𝜏, 𝜏 (1+_)). (A
sample drawn on the training space boundary extends to 𝜏 (1 + _).)

To generate a test case, we draw one point from the test space
and 𝑇 points from the training space. A test point is said to reside
within the application space if its Euclidean distance from the origin
is less than the inflated rejection threshold (𝜏 × ]). A test point is
recognized if its distance from any training point is less than the
adjusted rejection threshold 𝜏 × _. We classify a test point as true
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Figure 6: Simulated effect of threshold scaling on F1-score.
Each subfigure comprises two rings that enclose the train-
ing and application gesture class spaces, referred to as the
inner and outer rings, respectively. Individual training sam-
ples are randomly drawn from the inner space and rendered
as blue circles whose radii are equal to the rejection thresh-
old. False positive spaces are those enclosed by training sam-
ples that sit outside of the outer ring. False negatives areas
are those areas within the outer ring not enclosed by a train-
ing sample. In the top row, we hold the rejection threshold
constant as the training set size increases from one to five.
Just below, we find the scaled rejection threshold that opti-
mizes accuracy. Note how radial reductions lead to higher
scores.

positive if it is recognized and within the application space. A false
negative point is one that falls within the application space but is
not recognized. And a false positive point is one that is recognized
but falls outside of the application space. To estimate an F𝛽 -score,
we generate a large number of test cases, tally classification results,
and estimate accuracy from the stated results. To select an adjusted
threshold, we iterate over a number of scaling factors _ and select
that which maximizes accuracy.

One problem is that of how to select the hypersphere’s dimen-
sionality. Consider that if one spatially resample 63-component
Kinect trajectories to 16 points, onewill then have a 1008-dimensional
point. Sampling points in this space is both computationally pro-
hibitive and unrepresentative of real gestures because it assumes
complete independence between individual components. In real-
ity, data within trajectories are highly correlated—we need only a
few points to identify a gesture’s class [49]. For example, Vatavu
found that 2D gestures resampled to six points yield almost optimal
recognition performance under Euclidean distance [49], and similar
results were reported for 3D gestures [51]. We also observe via
Figure 7 that the effect of dimensionality on scaling diminishes
logarithmically as the dimensionality increases. For these reasons
we use 𝑑 = 6 in our evaluations, though we expect higher values
will also work well.
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Figure 7: Reduction in scale as training set size increases
over varying dimensions. Notice that the difference in scale
declines as the number of dimensions increase. These re-
sults indicate that by using simulation we can estimate a
scaling function that reduces the threshold as the training
set size increases.

4 EVALUATION: PART I
In this section, we measure VKM’s efficacy relative to alterna-
tive techniques in selecting a rejection threshold that discrimi-
nates gesture from non-gesture actions embedded in continuous
high-activity data. We refer to the continuous gesture recognition
pipeline used in this evaluation as the Dollar General $-family
techniques. Specifically, we use Machete [43] to segment incom-
ing continuous data into gesture candidates and Jackknife [44]
equipped with the inner product measure to evaluate said candi-
dates. Both Machete and Jackknife are $-family principled state-
of-the-art, device-agnostic, and computationally efficient nearest
neighbor recognition techniques. In greater detail, for each training
template, Machete uses continuous dynamic programming to esti-
mate where in time a gesture started if it ended on the current frame.
Machete also estimates a similarity score; and so for each frame,
Machete generates one gesture candidate per template. Using an
internal heuristic to cull most gesture candidates, the majority of
candidates are quickly discarded. However, since Machete is a seg-
menter (rather than a recognizer) its false positive rate is high. For
this reason, any remaining gesture candidates are passed to Jack-
knife for further analysis, as was previously done [43]. Jackknife
outputs a gesture recognition score for each remaining gesture
candidate, which Dollar General then accepts or rejects based on
the learned rejection threshold. In the remainder of this section,
we describe the high-activity data, rejection thresholds selection
techniques, and test protocol in more detail.

4.1 High Activity Data
To compare VKM against alternative rejection threshold selection
techniques, we use the publicly available Machete high-activity
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(HA) datasets [43]. To summarize the data, Taranta et al. collected
five training samples per gesture per input device type tested, using
ten unique participants per device: Mouse, Vive, and Kinect. Mouse
data consists of 10 unistroke gestures, Vive data includes 11 ges-
tures performed with both hands while standing, and Kinect data
consists of 17 full body gestures. Vive data is further subdivided into
position and orientation data so as to make four unique datasets.
They thereafter collected continuous data from each participant us-
ing a Follow-The-Leader (FTL) protocol [40], whereby participants
replicate the motions of a virtual actor, i.e., leader, who continuously
performs random actions. Their data collection tool periodically
interjected gesture requests via an on screen text prompt that the
participant would immediately execute, regardless of the actor’s
state. After gesticulating, the participant would, without pause,
return to following the leader. In the end, they collected three ex-
amples of each gesture interleaved among a variety of actions that
resembled puppeteering, direct object manipulations, and other
non-gesture actions. Our penultimate goal is to recognize all em-
bedded gestures with no false positives using the pipeline described
above.

4.2 Rejection Threshold Selection Techniques
We compare several rejection threshold techniques one may use
based on familiar concepts and prior work as follows:

(1) Optimal: This technique iterates over a range of rejection
thresholds and selects that which maximizes accuracy over
each user’s session data, for each level of every factor. There-
fore, manually labelled continuous ground truth data is used
to select the optimal threshold, which serves as our maxi-
mum achievable target using the given custom gesture recog-
nition pipeline.

(2) Mincer: VKM as described in the prior section whereby we
use GPSR to construct a positive distribution and Mincer to
construct a negative distribution, and from which we select
the threshold that maximizes accuracy using simulation.

(3) 3𝜎 : Random samples are often assumed to follow a normal
distribution. Under this assumption all scores will fall within
three standard deviations (3𝜎) of their mean to include 99.7%
of all samples. Even when distributions are not normal, prac-
titioners sometimes use a 3𝜎 pruning rule. For this reason,
we consider using GPSR to estimate the positive distribu-
tion mean and standard deviation so that we may set to the
rejection threshold to be 3𝜎 above the mean.

(4) 3𝜎-per-class: This technique is identical to 3𝜎 , except esti-
mates and rejection thresholds are set per class, rather than
globally.

(5) Minimum Distance: In a pairwise manner, we calculate
the distance between class samples and select the minimum
distance to be our rejection threshold. This is similar to
constructing an N-best list [57] on training data and selecting
the distance between the first and second class to be the
rejection threshold.

(6) Average distance: If we assume that some classes partially
overlap such as a square, curly, and parenthesis, then we
may require a looser rejection threshold. For this reason we
include the average between-class score as one option.

(7) Splicer: Similar to VKM except that we using the splicing
technique proposed in Jackknife [44] instead of Mincer.

Note, we informally investigated additional techniques derived from
those above, but none led to interesting or unique results. Since
they were led by trial and error efforts rather than by informed
design, we do not include them.

4.3 Test Procedure
We engage in user-dependent (UD) recognition testing. Our UD test
procedure follows. For a given technique, dataset, participant, and
training count 𝑇 , we randomly select 𝑇 samples per gesture class.
If there are 𝐺 gesture classes, then we train Jackknife with 𝐺 ×𝑇

samples. Thereafter, we learn a rejection threshold using the speci-
fied technique. After training is complete, we play the participant’s
session data through the continuous gesture recognition pipeline
and record all recognition results. From hand-labeled ground truth
data, we analyze classification results to generate an F1 score. This
process is repeated ten times per participant and all results are
averaged into a single accuracy measure.

In Section 3.2.2, we wrote that a new optimal-𝑁 equation was
learned from the high activity datasets used in our evaluation. It
is important to note now that we use a leave one out cross valida-
tion strategy, where data from the target participant is left out of
the optimization process and the resulting coefficients are in the
participant’s evaluation.

4.4 Analysis
With only 10 participants per input device, power to detect differ-
ences between multiple conditions and levels is limited. For this
reason we selected the four more accurate methods (Optimal, Min-
cer, 3𝜎 , and 3𝜎-per-class), and with these performed our statistical
analysis, althoughwe do report all accuracy results. Our experiment
was a 2-factor within-subjects repeated measures design, where the
rejection threshold selection technique and template training count
were the two factors. F1-score was the response measure. Because
accuracy was not normally distributed, we performed ANOVA and
post-hoc analysis with ART-C [12, 56]. To protect against multiple
comparison type I errors, we used the Holm-Bonferroni step-down
procedure [14].

4.5 Results
4.5.1 Kinect. Average accuracy for each method over varying tem-
plate counts is shown in Figure 8. The rejection threshold selection
method had a significant effect on overall accuracy (𝐹3,171 = 58.47,
𝑝 < .0001). Optimal achieved 94.1% (SD=3.3%) and was 0.7% more
accurate than Mincer at 93.4% (SD=4.1%), though the difference was
not significant (𝑡 (171) = 1.15, n.s.). However, Mincer was 4.3% more
accurate than 3𝜎-per-class at 89.4% (SD=5.3%), which was signifi-
cant (𝑡 (171) = 5.83, 𝑝 < .0001). Further, 3𝜎 at only 82.9% (SD=8.9%)
was 7.8% less accurate than 3𝜎-per-class (𝑡 (171) = −4.66, 𝑝 < .0001).
On average, Mincer out performed all alternative methods, coming
closest to Optimal performance.

The effect of template count on overall performance was not
significant (𝐹4,171 = 2.02, n.s.), but a closer look at the effect of
template count on the rejection threshold selectionmethod revealed
a significant interaction (𝐹12,171 = 2.18, 𝑝 < .05). From one to
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Figure 8: F1-Score over varying methods and train set sizes
for Kinect user-dependent test. Error bars are standard error
(68%) for legibility.

five templates, Optimal performance increased by 4.6% from 91.1%
(SD=3.4%) to 95.3% (SD=2.7%). Mincer increased by 4.9% from 90.3%
(SD=4.3%) to 94.7% (SD=3.7%). 3𝜎-per-class barely improved—0.4%
from 88.4% (SD=5.4%) to 88.7% (SD=6.2%0). And, 3𝜎 saw a 6.8%
decrease from 85.9% (SD=4.3%) to 80.0% (SD=10.6%). However, only
the Optimal difference was significant (𝑡 (171) = −3.75, 𝑝 < .05). It is
also interesting to note that with one template loaded, the pairwise
difference between each method is not significant. However, as the
template count increases, Optimal is not significantly different from
Mincer(𝑡 (171) = 0.51, n.s.), but 3𝜎-per-class is 6.3% less accurate
than Mincer (𝑡 (171) = 4.34, 𝑝 < .005), and 3𝜎 is similarly 15.5% less
accurate (𝑡 (171) = 6.85, 𝑝 < .0001).

4.5.2 Vive Position. Average Vive Position accuracy results for
each method over varying template counts are shown in Figure 9.
All rejection threshold selection methods performed well. Optimal
achieved a 96.7% (SD=3.1%) overall accuracy, followed by Mincer
at a 96.4% (SD=3.3%), a small 0.4% reduction. 3𝜎 achieved a 96.1%
(SD=3.8%) overall accuracy, which was 0.2% less accurate than Min-
cer, and 3𝜎-per-class achieved the lowest score of 95.7% (SD=4.3%),
a 0.7% decrease from Mincer’s results. However, their difference
was not significant (𝐹3,171 = 2.59, n.s.)

The effect of template count on overall accuracy was significant
(𝐹4,171 = 11.97, 𝑝 < .0001), but interaction effects between the selec-
tion methods and template counts were not (𝐹12,171 = 0.43, n.s.). In-
creasing template count from one to five increases the Optimal score
by 2.0% from 95.5% (SD=3.3%) to 97.4% (SD=2.5%). Mincer scores
improved by 2.1% from 95.1% (SD=3.8%) to 97.0% (SD=2.8%). 3𝜎
improvements were significant(𝑡 (171) = −3.95, 𝑝 < .05)—a 3.8% in-
crease from 93.6% (SD=5.3%) to 97.1% (SD=2.8%). 3𝜎-per-class score
improvements were also statistically significant (𝑡 (171) = −4.39,
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Figure 9: F1-Score over varying methods and train set sizes
for Vive Position user-dependent test. Error bars are stan-
dard error (68%) for legibility.

𝑝 < .005), increasing by 4.8% from 92.6% (SD=6.0%) at one template
to 97.1% (SD=2.8%) at five templates.

4.5.3 Vive Quaternion. Average accuracy results for Vive Quater-
nion dataset for each method over varying template counts are
shown in Figure 10. One will notice that overall accuracy across
all methods are lower with this data type than on other datasets.
The effect of the rejection threshold selection method on accuracy
was statistically significant (𝐹3,152 = 45.35, 𝑝 < .0001). Optimal
achieved an 89.3% (SD=4.2%) overall accuracy, followed by Min-
cer at 87.5% (SD=5.6%). This difference was not significant. Mincer
was also 15.9% more accurate than 3𝜎 (𝑡 (152) = 8.59, 𝑝 < .0001),
which only achieved 73.6% (SD=10.8%) overall accuracy. And the
slight lead of 1.3% by Mincer over 3𝜎-per-class was not statistically
significant (𝑡 (152) = 0.80, n.s.). Optimal was 17.6% more accurate
than 3𝜎 (𝑡 (152) = 10.99, 𝑝 < .0001), and 3.3% more accurate than
3𝜎-per-class (𝑡 (152) = 3.20, 𝑝 < .01).

The effect of the template count on accuracy was statistically
significant (𝐹4,152 = 3.79, 𝑝 < .01), but there was no significant inter-
action between the method × template count conditions (𝐹12,152 =
1.54). With one template loaded, none of the differences between
methods were significant, and simply increasing template count
for the selection methods did not result in significantly different ac
curacies. Still, with five templates loaded, all methods except for
3𝜎 performed at around 90%. Optimal achieved 91.7% (SD=2.5%),
followed by 3𝜎-per-class at 90.0% (SD=3.9%), and Mincer at 89.7%
(SD=5.1%). Mincer was 2.2% below Optimal, and only 0.3% below
3𝜎-per-class.

4.5.4 Mouse. Average Mouse accuracy results for each method
over varying template counts are shown in Figure 11. Optimal
and Mincer both achieve high accuracy (above 90%) using just one
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Figure 10: F1-Score over varying methods and train set sizes
for ViveQuaternion user-dependent test. Error bars are stan-
dard error (68%) for legibility.

template per gesture class, while the other methods do not achieve
high accuracy. The effect of the rejection threshold selectionmethod
on accuracy was statistically significant (𝐹3,171 = 243.91, 𝑝 < .0001),
with Mincer attaining 93.2% (SD=2.8%) overall accuracy, being only
0.3% less accurate (𝑡 (171) = 0.92, n.s.) than the Optimal at 93.5%
(SD=3.0%). Mincer was also 16.3% more accurate (𝑡 (171) = 21.80,
𝑝 < .0001) than 3𝜎 78.0% (SD=8.3%), and a statistically significant
difference of 6.9% (𝑡 (171) = 13.82, 𝑝 < .0001) was detected between
Mincer and 3𝜎-per-class 86.8% (SD=4.0%).

There was also an effect of method × template count on accuracy
(𝐹12,171 = 6.34, 𝑝 < .0001). For instance, the Optimal score from
91.1% (SD=3.1%) to 94.8% (SD=2.2%), which was a 4.0% increase
(𝑡 (171) = −4.87, 𝑝 < .0005). A 2.7% increase was also observed with
Mincer, from 91.6% (SD=3.2%) to 94.1% (SD=2.3%), but the difference
was not significant (𝑡 (171) = −3.14, n.s.). 3𝜎 with one template
achieved 84.3% (SD=4.3%), and 73.3% (SD=9.1%) with five templates,
which was a 13.1% decrease (𝑡 (171) = 3.36, n.s.). 3𝜎-per-class scores
decreased from 89.5% (SD=2.6%) to 84.0% (SD=4.6%), which was a
6.1% difference (𝑡 (171) = 3.7705). With one loaded template, Mincer
was not significantly different from Optimal (𝑡 (171) = −0.55, n.s.).
3𝜎-per-class performed similarly, 89.5% (SD=2.6%), which was a
1.8% decrease from the Optimal score (𝑡 (171) = 1.77, n.s.). Accuracy
was 2.3% lower when using 3𝜎-per-class compared to Mincer, but
the difference was not significant (𝑡 (171) = 2.32, n.s.). With five
templates loaded, Mincer achieved 94.1% (SD=2.3%) remaining close
to Optimal performance—an 0.8% difference (𝑡 (171) = 1.18, n.s.).
3𝜎-per-class achieved only 84.0% (SD=4.6%), and 3𝜎’s accuracy
was even lower at 73.3% (SD=9.1%). A significant 10.7% difference
between Mincer and 3𝜎-per-class was detected(𝑡 (171) = 9.23, 𝑝 <

.0001), as well as a 22.1% difference betweenMincer and 3𝜎 (𝑡 (171) =
12.59, 𝑝 < .0001). We see that Mincer is accurate with both low and
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Figure 11: F1-Score over varying methods and train set sizes
forMouse user-dependent test. Error bars are standard error
(68%) for legibility.

high template counts, and remains close to Optimal performance
through all levels, whereas other methods perform worse and drop
in performance as the template count increases.

4.6 User Independent Testing
We also performed a preliminary investigation to understand user-
independent recognition performance. Although the test protocol
is similar, we vary both the training participant count and training
samples per participant, in accordance with prior work [55]. All
techniques, including Optimal, were less accurate. We noticed that
as the training set size increased, several (in some cases all) alterna-
tive techniques dropped in performance. Mincer, on the other hand,
maintained or improved in accuracy as the training set grew. For ex-
ample, from one training participant with one template loaded per
participant to four participants with four templates, optimal Kinect
performance increased from 79.3% to 89.0%, Mincer from 73.0% to
88.1%, and, the next best 3𝜎-per-class, from 74.3% to 81.5%. Opti-
mal Vive Position accuracy increased from 84.5% to 94.0%, Mincer
from 73% to 93.7%, and 3𝜎 from 50.5% to 91.9%. Similarly, optimal
Vive Quaternion increased from 57.0% to 77.7%, Mincer from 45.8%
to 75.5%, and 3𝜎-per-class from 39.9% to 76.9%. Finally, optimal
Mouse accuracy increased from 86.5% to 92.7%, Mincer from 85.1%
to 87.3%, and decreased for 3𝜎-per-class from 84.7% to 69.2%. To
fully understand the ramifications of our evaluated methods in the
user-independent setting, a more rigorous investigation is required,
which we leave to future work.

5 EVALUATION PART II
As we saw in our prior evaluation, Dollar General using VKM for
rejection threshold selection was a top performer in recognizing
custom gestures embedded in continuous high-activity data. In this
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section we further evaluate VKM using the same Dollar General
pipeline to better understand how a $-family based system performs
relative to more complex continuous gesture recognition systems.
For simplicity, we refer to this pipeline as The Dollar General (TDG)
as its parts are derived from various $-family ideas and techniques.

5.1 The Eurographics 2019 Shape Retrieval
Contest, Gesture Track

To understand how TDG performs relative to other continuous
gesture recognition techniques, we first turn our attention to the
Eurographics 2019 SHape Retrieval Contest (SHREC) track on on-
line gesture recognition [6]. The competition organizers collected
continuous data from participants that were similar to our high-
activity data—their data also combines gesture with non-gesture
actions. Specifically, they developed a virtual environment for the
Oculus Rift that sampled hand pose data using a LeapMotion device,
where “actions consisted of selecting objects, clicking on virtual but-
tons, moving a slider and spinning a globe with a swipe” [6, p. 94].
While interacting with the environment, participants were asked to
perform one of five gestures at various times: cross, V-mark, caret,
square, or circle.

The organizers collected data from thirteen participants such that
gestures were performed in different positions. They then divided
the dataset into a 4/9 split, where four participants were used for
training and nine for user-independent recognition testing. Session
data was further divided into 60 annotated training sequences and
135 test sequences. This is not strictly a customization scenario,
but nonetheless represents a realistic use case where a designer
acquires approximately three samples per gesture class from four
peers or friends during an iterative development cycle. This is a
challenging problem because, even in aggregate, the amount of
training data is still relatively little, and the recognizer is trained
and tested with different users.

Five groups participated in the competition, though one group
was the organizers who provided a baseline recognizer based on
3 cent [7]. The other four groups provided neural network based
solutions. Test sessions were played through trained recognizers
that output recognition results. Post processing scripts analyzed
the output and generated several error measures, including the
percentage of correctly classified, mislabeled, false positive, and
false negative gestures. Note that mislabeled gestures are a special
kind of false positive that occurs when a gesture is detected within
the window of an expected gesture, but the class label is incorrect.
We ran the same evaluation on TDG using Vive Position GPSR
parameters, since both involve hand tracking data.

We combine TDG results with the original competition results
in Table 1. We found that TDG outperformed all alternative tech-
niques in classification accuracy and was the only system that
achieved high accuracy (≥ 90%). TDG errors were mostly due to
false negatives. uDeepGRU2 also performed well relative to the
other methods, achieving 85.2% recognition accuracy. uDeepGRU
like TDG uses synthetic data generation to augment training data,
which facilitates learning from limited quantities. Other methods
do not fare as well, which indicates the difficulty of this challenge.
It is important to note that VKM’s ability to select tight rejection
threshold is a key reason why TDG performs well as it does.

Table 1: SHREC 2019 competition results reported as per-
centage values. Each row sums to 100%. See [6] for a descrip-
tion of each continuous gesture recognizer.

Method Correctly
Classified Mislabeled False

Positives
False

Negatives

The Dollar General 90.7 0.7 0.7 8.1
uDeepGRU2 85.2 7.4 3.0 4.4
uDeepGRU1 79.3 8.1 3.0 9.6
uDeepGRU3 79.3 8.1 2.2 10.4
SW 3-cent 75.6 16.3 2.2 5.9
DeA 51.9 18.5 25.2 4.4
AJ-RN 28.1 43.0 23.0 5.9
PI-RN 11.1 39.3 48.9 0.7
Seg. LSTM1 11.1 28.9 60.0 0.0
Seg. LSTM2 6.7 25.2 68.1 0.0

5.2 uDeepGRU Performance on High-Activity
Data

Based on SHREC 2019 competition results, we decided to evaluate
uDeepGRU on our high-activity data. We choose to use uDeepGRU
because it was the second best performer in that competition, and
like TDG, uDeepGRU was designed to work with a variety of input
device types. Since the competition, several improvements have
been made to the system, which we use in this evaluation.

5.2.1 uDeepGRU. uDeepGRU is based on DeepGRU [32], a device-
agnostic gesture recognizer that was shown to outperform many
state-of-the-art recognizers across a variety of publicly available
datasets (using test protocols adopted by the community that are
unique to each dataset). In cases where DeepGRU did not achieve
top performance, it still performed competitively. uDeepGRU uses
a similar architecture that comprises an encoder and classification
neural network. The encoder network uses unidirectional gated
recurrent units [9] for its recurrent layers, and a fully connected
layer for its classification network. Details are available in [6].

At each time step, uDeepGRU outputs a class label, one of which
may be none, i.e., no gesture detected. The system will try to learn
all parts of a gesture so that it can output appropriate labels early
in a gesture sequence. This is problematic with high-activity data
because many non-gesture actions partially overlap with valid ges-
tures, and without sufficient negative training data, uDeepGRU
cannot learn how to separate gestures from other actions. SHREC
2019 training samples contained both gesture and non-gesture mo-
tions from which uDeepGRU learned, whereas our high-activity
training dataset contains only segmented gestures. We overcome
this issue in two ways. First, similar to splicing, we concatenate par-
tial, randomly selected, gesture subsequences to both sides of full
gesture samples for training. Second, all frames are labeled none,
except for the last second of each real gesture sequence. These mod-
ifications help protect uDeepGRU from reporting early detections.

5.2.2 Method and Results. We used an identical test protocol to
that reported in our first evaluation. One difference is that we used
all available training samples (𝑇 = 5), where in each iteration, we
used four random samples for training and the remaining sample
for validation. After training, we replay the participant’s session
through uDeepGRU and save per frame label classification and score
results. We say a user gesticulated if uDeepGRU outputs identical
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Table 2: uDeepGRU Kinect results

Method T=1 T=2 T=3 T=4 T=5
` 𝜎 ` 𝜎 ` 𝜎 ` 𝜎 ` 𝜎

Optimal 0.91 0.04 0.94 0.03 0.95 0.03 0.95 0.03 0.95 0.02
TDG 0.91 0.05 0.93 0.04 0.94 0.03 0.94 0.04 0.95 0.04
uDeepGRU — — — — — — — — 0.86 0.05

labels over a contiguous set of frames and the classification scores
are above a certain threshold. Using a grid search, we find those
thresholds that maximize F1. Although, this is not how one would
use uDeepGRU in practice, we wanted to give it the best chance
possible to achieve high accuracy.

Kinect results are reported in Table 2. We find that uDeepGRU
does not achieve high accuracy, even with five training samples. In
fact, TDG with a single training sample outperforms uDeepGRU
with five training samples. The percentage increase in error rates
between optimal (baseline) and uDeepGRU is also large (≈ 366%)
compared to TDG (≈ 9%).

6 DISCUSSION
It is clear from our first evaluation that The Voight-KampffMachine
is well suited to rejection threshold selection for custom gestures.
Among the six threshold selection techniques tested, VKM outper-
formed all other selection techniques and was the only method to
achieve high accuracy (≥ 90%) across all four high-activity datasets
in our user dependent recognition test. In three cases, we saw high
accuracy even when only one training sample per gesture class was
loaded, and, in all cases, performance improved with more training
data. This means that designers can feel confident using VKM for
rejection threshold selection for a variety of input device types.

We further found that VKM with Machete and Jacknife (TDG)
also performed well on continuous high-activity hand gesture data
collected with a Leap Motion input device. Specifically, TDG out-
performed all competitors in the SHREC’19 competition, being the
only system to achieve high accuracy. This was only possible be-
cause VKM is able to select near optimal rejection thresholds. Our
competitors used state-of-the-art techniques in neural networks,
but only uDeepGRU came close to our level of performance. The or-
ganizers give a possible reason, stating that “these methods require
a relevant effort for optimizing training strategies working with a
limited number of examples and participants had a limited time to
prepare the submission. [...] other methods (DeA, AJ-RN, PI-RN, Seg
LSTM) are detecting a lot of false positives, and typically provide a
false detection as the first result. Proper tuning of the method could
avoid this effect” [6, p. 98]. Although TDG has tunable parameters
throughout the system, there is little effort involved in selecting
appropriate values given that VKM is fully automatic.

It is also worth noting that uDeepGRU took over one hour to
train due to its internally generated synthetic data, and because of
uDeepGRU’s architecture, it already trains faster than other neural
network solutions. Our C++ based TDG code, on the other hand,
takes less than thirty seconds to train on a 2.3 GHz Intel Core i5
based MacBook Pro with five templates loaded. Customization re-
quires fast, online training so that users can iteratively adjust their
preferences and practitioners can quickly iterate their designs. This

makes TDG an ideal choice for customizable user interfaces gener-
ally, and VKM ideal for rejection threshold selection specifically.

It is interesting to find that although we learned optimal-𝑁 GPSR
equation coefficients for specific input devices, there is some trans-
ference. We ran VKM with parameters learned from Vive Position
data on SHREC’19 competition data with great success; and as
noted, not only did we achieve high performance, but we also out-
performed all competitors. This is not always the case, as informal
testing has already revealed that we cannot use parameters learned
for Kinect on Mouse input data. However, it may be that Kinect-
based coefficients work well with other skeletal tracking systems
designed for full body gestures, that Vive Quaternion parameters
work well with other 3D orientation tracking systems, and so forth.

6.1 Limitations and Future Work
An issue with our current positive synthetic data generation ap-
proach using GPSR requires that we learn unique parameters for
every input device. This is problematic in that if the parameters do
not transfer as discussed above, designers will repeat the process
we used to find suitable parameters, which is not only inconve-
nient but also time consuming. Even if we were able to establish a
large catalog of coefficients for different input device types, HCI
researchers continuously prototype new hardware and explore the
usability of these devices, which often involves gesture input.

It may be that optimal-𝑁 depends on the unique proclivities of
an input device, those characteristics that contribute to noise, pose
estimation, measurement error, and constraints that influence how
users move or interact with the device. Or it may be that we have
not yet found the right set of trajectory attributes to examine. For
example, the set of parameters that are appropriate for touch input
may also be suitable for Kinect input if we were able to take into
account frequency domain information and make necessary trans-
formations. To further improve GPSR, we will have to investigate
these possibilities.

A second issue is that threshold scaling requires possibly un-
known information. Through simulation we determine an appro-
priate scaling value that takes into account differences in training
and application gesture production variabilities as well as the effect
of the training dataset size. Differences in variability cannot always
be known in advance but is highly relevant since ignoring these dif-
ferences can lead to VKM underestimating the rejection threshold,
which in turn leads to an increase in false negatives. With respect
to training set size, we assume that all gesture samples come from
the same underlying distribution, but it may be that users use dif-
ferent forms of a gesture depending on context or happenstance. A
straight arrow in one moment may be a curved arrow in the next,
but either way, it may be a mistake to assume each instance derives
from the same internalized action plan. In this case, it would be
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more appropriate for simulation to assume unique distributions for
each gesture if this information were available a priori. To address
both of these concerns, it will be worth investigating online meth-
ods that can analyze motion data as it arrives to determine if there
are deviations from the underlying assumptions.

7 CONCLUSION
We have introduced The Voight-Kampff Machine to solve the au-
tomatic rejection threshold selection problem for custom gesture
recognition. VKM provides a general framework for threshold selec-
tion based on synthetic data generation using GPSR and Mincer. We
defined a new optimal-𝑁 equation for GPSR that replicates global
within class score distributions. We were also able to show that
Jackknife’s splicing technique generates realistic negative score
distributions, but this negative data generation method does not
lead to optimal results. We addressed this issue with Mincer, which
generates gesture class-specific negative samples, leading to better
rejection thresholds. Our evaluation of four high-activity datasets
revealed that TDG with VKM is able to achieve not only high ac-
curacy, but also near optimal performance. Further, we found that
our system is competitive with alternative deep learning methods
despite being significantly less sophisticated. For these reasons,
we believe VKM has great potential to facilitate custom gesture
recognition and enable individuals to explore user interface design
in ways they would not have been able to otherwise.
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